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The equation of state of matter at ultra-high densities 
Abstract. In this work it is shown that Zeldovich’s results for the behaviour of 
matter at ultra-high densities are not valid when many-body forces are included. 

There has been much interest in ultra-high density matter with respect to subjects 
such as cosmology, gravitational collapse and neutron stars. The equation of state for 
such matter is usually calculated assuming that the system consists of particles 
interacting via a potential. The validity of this assumption is doubtful but can hardly 
be avoided until better techniques are available. 

The speed of sound D, as calculated for most such equations of state for ultra-high 
density matter, increases with density and eventually exceeds that of light. Such 
equations of state are usually cut off (Tsuruta and Cameron 1966) at the density when 
D = C. 

Zeldovich (1962) has constructed a model in which the limit D = c is reached as 
the number density n -+ CO. He considers a system of a large number of baryons 
(mass M )  interacting via the exchange of vector mesons of non-zero mass ,U. The 
interaction between two static baryons is shown to be repulsive and of the form 

g2 exp( - P 1 2 )  v =  --- 
y 1 2  

whereg is a constant. He then shows that the energy per unit volume is 
E 2.rrg2n2 - Mn+ - a EL2 
_ -  

so that the pressurep = 2ng2n2/p2. Hencep -+ E / Q  and D -+ c as n -+ CO. 

By arguing that the potential V may be density dependent, because of the exchange 
of a number of mesons, Harrison (1965) has obtained a modification of Zeldovich’s 
result so that p -+ +E/Q as n -+ 03. 

In Zeldovich’s model (and also in Harrison’s model) of a system of baryons 
interacting via the exchange of mesons, it has been tacitly assumed that the static 
potential energy V(rl,  r2, ... , rN) of N fixed baryons can be expressed as a sum of two- 
body potentials Xj# jV2(r f ,  r j ) .  However, it has been known for a long time (Prima- 
koff and Holstein 1939) that the potential energy of a system of particles cannot be 
expressed as the sum of two-body potentials and is instead of the form 

V(t.1, r2, * ‘ e  2 f N )  = 2 Vz(r*, q)+ 2 V3(rf, rj, %)+ * - .  + ViV(r1, 1 2 ,  a . .  , f N )  
f # j  4 # j # k  

where V, is a j-body potential. Usually (particularly at low densities) the many-body 
potentials V j ( j  2 3 )  are negligible. In this work we shall show that at high densities 
many-body potentials are the ones which become dominant, so that Zeldovich’s 
results are no longer valid. As in Zeldovich’s model we shall neglect effects such as 
particle creation, velocity dependence of potential etc. 

We consider a system of baryons (fermions), interacting via many-body potentials 
which we assume to depend only on the interparticle distances. Thus the Hamiltonian 
for the system is 



L20 Letters to the Editor 

Here, yb( 1) stands for the annihilation operator for a fermion at r, at time t,, $+( 1) being 
the corresponding creation operator. In  equation (1) we take t ,  = tz = ... = t,. 

1 

We define the one-particle Green’s function 

G(1,l’)  = 7 < ~ ( $ ( l ) W ’ ) ) )  
2 

where the expectation value is taken with respect to the exact ground state. Using 
standard methods (Kadanoff and Baym 1962) the ‘equation of motion’ for the one- 
particle Green’s function is given by 

i - + -- G(1,l’) = 6(1-1‘)+ dr, dr, ... d r j  i at, 2M 
x Gj(12 ...j, 1‘2’ . . . j+) Vj(rl, r,, ... rj) (2) 

where t ,  = t2 = ... = t j  and 2+ stands for r,, t2+  6. In  the Hartree approximation 
we write 

G3( 123 . . , j ,  1 ’2+ . . . j + )  21 G( 1, 1 ’)G(2, 2+) . . . G(j, j + ) .  

iG(2,2+) = (n(r,>). 
Furthermore 

For a translationally invariant system (Kadanoff and Baym 1962) we write 

+(pa) ) = 12 

(the number density) so that equation (2) becomes 

a, = 1 dr, ... d r j  Vj(rl, ... , r j )  

is a constant, independent of r, for a translationally invariant system. The  Fourier 
transform of the one-particle Green’s function is hence given by 

where 

Since E@,) = (aE/BN), wherep, is the Fermi momentum and N is the total number 
of particles in a volume Q, it follows that 

If we set V, = 0 for j > 2 then aj = 0 for j > 2. Further, if we take the two-body 
potential to be the one used by Zeldovich, V2 = g2 exp(p12)/r12, it is easy to show 
that a2 = 4rrg2/p2. Hence, as n + 00, 

E 217g2n2 
-N- 

Q P2 
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which is precisely the result obtained by Zeldovich. Note that even if we had used the 
correct relativistic expression for the kinetic energy and included the rest-mass 
energy, the potential energy would have been dominant in the high-density limit. 

If the many-body potentials are included in equation (4) aj is positive if V j  is 
repulsive, and negative if V, is attractive. Many-body potentials are extremely 
difficult to derive and in general may be repulsive or attractive. In this connection it 
is interesting to note that the static nuclear many-body potentials derived using old- 
fashioned perturbation theory (Drell and Huang 1953) were found to be repulsive for 
j odd and attractive for j even. Hence, as n -+ 00, the behaviour of Eli2 is not known, 
quite contrary to the results of Zeldovich and Harrison. 

I t  should be noted that the true ground-state energy is lower than that given in the 
Hartree approximation because of the neglect of the Hartree-Fock and correlation 
energies. These corrections were also neglected by Zeldovich. 

In conclusion, we find that the energy per unit volume in the Hartree approxima- 
tion is given by a power series in the density. The terms in n3, n4, ... come from the 
contributions to E / Q  of the 3,4, ... body potentials respectively and were not included 
by Zeldovich and Harrison. As n +- 00 it is not known whether Eli2 tends to a limit 
or not so that we cannot say anything about the corresponding behaviour of the speed 
of sound. This is hardly surprising considering the complexity of ultra-dense matter. 
We suggest that, if all the many-body potentials are properly taken into account, the 
speed of sound will not exceed that of light. 

The author is grateful to Professor S. S. Schweber for suggesting the importance 
of many-body forces in dense matter and for many discussions. He is also grateful to 
Professor P. Ledoux for his helpful comments. 

Brandeis University, 
Waltham, 
Massachusetts, U.S.A. 

G .  CHANMUGAM? 
12th January 1970 
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Experimental observation of the drift-dissipative 
instability in afterglow plasmas 

Abstract. This letter presents results which support the general shape-of the 
w against k ,  dispersion curve for the drift-dissipative instability, predicted 
using the ‘two-fluid’ equations in slab geometry. The wave is observed to be 
self-excited in the k, region where a positive growth rate is predicted. 

In afterglow plasmas, the usual possible causes of instability such as axial current, 
non-isotropic velocity distributions, imposed electric fields, etc., are absent. Conse- 
quently, most experiments on afterglows have shown them to be stable; however, 
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